
 
 

UNIVERSITI PUTRA MALAYSIA 
 
 
 
 
 

A COMBINED ATTITUDE AND SUN TRACKING SYSTEM FOR 
SPACECRAFT USING FUZZY LOGIC CONTROL 

 

 
 
 
   
 
 
 
 
 

CHAK YEW CHUNG 
 
 
 
 
 
 
 
 
 
 
 

 
FK 2019 118 



© C
OPYRIG

HT U
PM

A COMBINED ATTITUDE AND SUN TRACKING SYSTEM FOR 

SPACECRAFT USING FUZZY LOGIC CONTROL 

By 

CHAK YEW CHUNG 

Thesis Submitted to the School of Graduate Studies, Universiti Putra 

Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of 

Philosophy 

January 2019 



© C
OPYRIG

HT U
PM

All material contained within the thesis, including without limitation text, logos, icons, 

photographs and all other artwork, is copyright material of Universiti Putra Malaysia 

unless otherwise stated. Use may be made of any material contained within the thesis 

for non-commercial purposes from the copyright holder. Commercial use of material 

may only be made with the express, prior, written permission of Universiti Putra 

Malaysia. 

Copyright © Universiti Putra Malaysia 



© C
OPYRIG

HT U
PM

i 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 
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January 2019 

Chair : Prof. Dato’ Ir. Renuganth Varatharajoo, PhD 

Faculty : Engineering 

Many spacecraft attitude control systems today use reaction wheels to deliver precise 

torques to achieve a three-axis attitude stabilization. Despite the extensive studies in 

attitude controllers, failures still can occur in a spacecraft system. For example, if a 

spacecraft suffers multiple reaction wheel failure, external disturbances will cause the 

spacecraft to tumble and lose its ability to correct the attitude error. If the failure is 

irrecoverable, it may cause the spacecraft to spin uncontrollably and jeopardize the 

space mission. The most common way to recover a tumbling spacecraft is by firing 

chemical thrusters sequentially to generate a torque, which can control the total 

momentum of the spacecraft. Since the thrusters expel reaction mass to produce a 

torque, this leads to increased fuel consumption and eventually shortened operational 

life. 

Most spacecraft have their solar arrays mounted on the y-axis and oriented 

perpendicular to the sun to receive the maximum amount of solar energy. The solar 

arrays are rotated using Solar Array Drive Assemblies to track the sun. As a result of 

the rotations of the solar arrays, internal torques are generated. The main objective in 

this research is to design a combined attitude and sun tracking system (CASTS) that 

can utilize the internal torques produced by the solar arrays for attitude control while 

tracking the sun simultaneously. Two mechanisms are proposed for the CASTS to 

generate the internal control torque by rotating the solar arrays at different angular 

speeds. In order to counteract the external disturbance torque, several non-fuzzy logic 

and fuzzy logic controllers are designed for CASTS. The performance of the proposed 

CASTS control strategy is tested through numerical simulations. The findings show 

that all fuzzy logic-based control schemes are able to achieve smaller pitch angle errors 

compared to the non-fuzzy logic controllers. Overall, the research results show that the 

proposed CASTS control strategy is effective for controlling the spacecraft attitude and 

tracking the sun simultaneously. 
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SISTEM GABUNGAN PENJEJAKAN ATTITUD DAN MATAHARI BAGI 

KAPAL ANGKASA LEPAS MENGGUNAKAN KAWALAN LOGIK SAMAR 

Oleh 

CHAK YEW CHUNG 

Januari 2019 

Pengerusi : Prof. Dato’ Ir. Renuganth Varatharajoo, PhD 

Fakulti  : Kejuruteraan 

 

 

Kebanyakan sistem kawalan attitud kapal angkasa hari ini menggunakan roda reaksi 

untuk memberikan tork tepat untuk mencapai kestabilan attitud tiga paksi. Walaupun 

kajian yang luas dalam pengawal attitud, kegagalan masih boleh berlaku dalam sistem 

kapal angkasa. Sebagai contoh, jika kapal angkasa mengalami kegagalan roda reaksi 

yang banyak, gangguan luaran akan menyebabkan kapal angkasa jatuh berguling dan 

kehilangan keupayaannya untuk membetulkan kesilapan attitud. Jika kegagalan itu 

tidak dapat dipulihkan, ia boleh menyebabkan kapal angkasa berputar tanpa kawalan 

dan ini menjejaskan misi angkasa. Cara yang paling biasa untuk memulihkan kapal 

angkasa yang bergolek adalah menggunakan tujahan kimia secara serentak untuk 

menghasilkan tork yang berupaya mengawal jumlah momentum kapal angkasa. Oleh 

kerana penujah menghembuskan jisim tindak balas untuk menghasilkan tork, ini 

menyebabkan peningkatan penggunaan bahan api dan akhirnya memendekkan tempoh 

hayat operasi. 

 

 

Kebanyakan kapal angkasa mempunyai panel suria yang dipasang pada paksi-y dan 

ditujukan serenjang menghala ke matahari untuk menerima jumlah maksimum tenaga 

suria. Panel suria diputar menggunakan Pemasangan Pemandu Panel Suria untuk 

menjejaki matahari. Hasilan daripada putaran panel suria, tork dalaman dijanakan. 

Objektif utama dalam penyelidikan ini adalah untuk mereka bentuk sistem gabungan 

penjejakan attitud dan matahari (CASTS) yang boleh menggunakan tork dalaman yang 

dihasilkan oleh panel suria untuk mengawal attitud dan menjejaki matahari dengan 

serentak. Dua mekanisme dicadangkan bagi CASTS untuk menghasilkan tork kawalan 

dalaman dengan memutar panel suria pada halaju sudut yang berbeza. Untuk mengatasi 

tork gangguan luaran, beberapa pengawal bukan logik samar dan pengawal logik samar 

direka untuk CASTS. Prestasi strategi kawalan CASTS yang dicadangkan diuji melalui 

simulasi berangka. Penemuan menunjukkan bahawa semua skema kawalan berasaskan 

logik samar dapat mencapai ralat sudut kecondongan dari paksi-y yang lebih kecil 

berbanding dengan pengawal bukan logik samar. Secara keseluruhannya, keputusan 

kajian menunjukkan bahawa strategi kawalan CASTS yang dicadangkan adalah 
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berkesan untuk mengawal attitud kapal angkasa dan menjejaki matahari pada masa 

yang sama. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Background of Spacecraft Attitude Control 

 

Without a reliable spacecraft attitude control system, any space mission that requires 

pointing requirements, such as safe modes, acquisition modes, science modes, and 

orbital maneuver would be very difficult, if not impossible. On 4 October 1957, the 

Soviet Union launched Sputnik 1 into low Earth orbit and this marks the dawn of the 

space age. In the early days, the spacecraft are spun around the axis of maximum 

moment of inertia so that it can be fixed stably at one axis. This method, known as spin 

stabilization, was most employed due to lack of technological advancements in 

computer hardware to perform complicated control algorithms. Because of the 

balancing requirement, all components and devices have to be carefully designed, 

albeit the spin-stabilized spacecraft is as stable as a spinning top. However, this is 

difficult to achieve as the trade-off between the desired accuracy and payload design 

has to be made. Moreover, design contingencies must also be included for the unknown 

risks associated with everything onboard that can move during launch and flight, such 

as motors, pumps, and fluid sloshing in propellant tanks. 

 

 

Generally, humans launch spacecraft into space for the reason of pointing an equipment 

or an instrument at something of interest due to the desire to explore. Man-made 

spacecraft that orbit celestial objects are known as artificial satellites. For example, in 

astronomy and astrophysics missions, the purpose is to point a telescope at planets in 

our solar system, distant stars, or other interstellar objects beyond the Milky Way 

galaxy. In Earth observation missions, the objective is to point high resolution optical 

cameras, radars or imaging spectrometers toward a desired location on the Earth 

surface to collect spatial data. For communications between satellites and ground 

stations, the transmitting and receiving antennas are oriented to point towards each 

other to achieve the optimum directive gain. These examples imply that the orientation 

of the spacecraft (also known as attitude) needs to be regulated so that it holds stably at 

some desired pointing direction. To accomplish this task, some forms of attitude 

control, whether active or passive, is required. The choice of active or passive control 

entirely depends on the type of mission, which is directly related to the required 

attitude accuracy, and the mission budget. If the accuracy requirements are low, then 

passive attitude control exploits the spacecraft’s surrounding natural energy sources 

such as gravity gradients, Earth’s magnetic field, or aerodynamic drag of the 

atmosphere at low Earth orbits to stabilize in the neighborhood of a stable equilibrium 

at the desired attitude. Otherwise, actuators capable of affecting the attitude, such as 

thrusters, reaction wheels, control moment gyroscopes, and magnetic torquers must be 

installed on the spacecraft for active attitude control. 
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1.1.1  Problem Statements 

 

In the last five decades, semiconductor technology had evolved from the first transistor 

made in the Bell Laboratory to solid-state electronics, exponentially accelerating 

technological change in microprocessor, microcontrollers, actuators, and sensors. Not 

only more and more three-axis stabilized spacecraft are launched, but attitude control 

schemes also have been extensively studied and improved, ensuring the stability of 

attitude control systems. However, the control of spacecraft attitude becomes a 

challenging problem when large angle maneuvers are required. The governing 

equations of attitude dynamics are inherently nonlinear, and thus the linearized 

dynamical model is no longer valid for large angle maneuvers. Another issue deals 

with saturation nonlinearities, where all physical actuators and sensors are subject to 

the maximum limits of angular velocities, torques, and measuring ranges. If large Euler 

angle (approaching 90°) is commanded, the spacecraft attitude stability could be ruined 

by kinematic singularity, where some elements of the attitude matrix become infinitely 

large and problematic for control computation. Fortunately, the kinematic singularity 

issue can be avoided by using other computationally-efficient kinematic expressions 

such as quaternions and modified Rodrigues parameters. 

 

 

Despite the extensive studies in attitude control laws, failures still can occur in a 

spacecraft system, either in actuators, control hardware, or sensors. For example, if a 

three-axis stabilized spacecraft suffers multiple reaction wheel failure, external 

disturbances will cause the spacecraft to lose its ability to correct the attitude error. If 

the failure is irrecoverable, a tumbling spacecraft may jeopardize the missions, or even 

a total loss, as experienced by EchoStar 5, FUSE, and Navstar 2-08 [1]. One of the 

headline-grabbing incidents was the NASA’s exoplanet-hunting space telescope, 

Kepler, where the original mission had to be modified to search for exoplanets at 

different constellation fields [2]. 

 

 

In 2005, Hayabusa, the asteroid sample-return spacecraft, lost two reaction wheels on 

the roll and pitch axes, forcing it to stabilize its attitude using only the Xenon cold gas 

jets [3]. Having depleted its chemical fuel, the spacecraft switched to ion engine thrust. 

To save the remaining fuel (xenon gas), the solar radiation pressure approach was used 

on the Hayabusa spacecraft for attitude control in a recovery mode. However, this 

approach becomes ineffective during the orbital eclipse phase. Adding to the list, the 

JAXA’s X-Ray Astronomy Satellite, Hitomi, broke up into five pieces due to an 

uncontrolled tumbling, leading to a total loss. After ceasing efforts to recover the 

satellite one month later, the final investigation showed that the mishap was caused by 

the malfunctioning sensor and flawed attitude controller [4]. 

 

 

A common practice to recover a tumbling spacecraft is by firing multiple ion thrusters 

or cold gas jets sequentially to generate a desired torque, which can control the total 

momentum of the spacecraft. Since the thrusters expel propellant to produce a control 

torque, this leads to increased fuel consumption and eventually shortened operational 

life, if the faulty reaction wheel is irrecoverable. 
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All these unforeseen events show that it is important to have redundancy for the 

attitude control system. But having redundant actuators means adding extra payload 

weight to the spacecraft as well as increasing the system complexity. Therefore, the 

most cost-effective way is to use the existing subsystems as the potential alternative 

attitude actuators in a synergistic way, without losing their original functions [5]. For 

the sake of maintaining operations, the principal preference for a fuel-saving approach 

is to exploit the existing subsystem, Solar Array Drive Assembly (SADA). 

 

 

1.1.2  Space Modeling and Simulation 

  

In the field of space modeling and simulation, models and simulators are used to 

produce results that resemble a spacecraft system’s motion in a virtual simulation 

environment. Simulations are performed not only to investigate a spacecraft system’s 

performance, but also to identify the cost parameters in the design and to eliminate 

flawed control algorithms, which can help to reduce the budget strategically without 

compromising the space mission. 

 

 

In fact, the models designed by the engineers can be used in various ways. They can be 

used to predict the spacecraft system’s behavior, which has enabled rapid technological 

advancement in spacecraft system engineering over the last few decades. This is 

especially true when the experimental methods are very difficult, if not impossible. For 

example, it is very difficult to create a sufficiently large weightlessness and frictionless 

environment on Earth to test the costly prototypes and bulky satellites. Thus, engineers 

are able to make good use of the simulation studies to make strategic decisions without 

having to construct an expensive prototype of a real spacecraft. 

 

 

The models can also be used for data collection, especially in dealing with structural 

vibration and thermal management of the spacecraft, because once the engineers know 

which data are most critical to the spacecraft architecture and design process, they can 

design the subsystems more reliably and perform system integration more effectively. 

 

 

More importantly, the models should be used to build potential solutions to the control 

problems by applying physical constraints in design to potential solutions and then 

conduct feasibility assessment on the potential solutions. Furthermore, having multiple 

solutions enables the engineers to compare real-world observations with the 

observation of model behaviors, which then provide sufficient knowledge to the 

engineers to make decisions whether to discard or to improve the original solutions. 

 

 

1.1.3  Motivations 

  

Knowing that the actuators are part of the active attitude control system, the research 

task is to determine the appropriate amount of attitude control torque the actuator 

should produce and deliver to the spacecraft. This becomes the fundamental problem of 

the control system design. In control system design, engineers have to deal with three 

major subsystems, namely Guidance, Navigation, and Control (commonly abbreviated 

GN&C). In the Guidance subsystem, the task is to determine the desired attitude 
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trajectory from the spacecraft’s current attitude, including the required changes in 

angular velocity, and angular acceleration necessary for tracking that trajectory. The 

task of the Navigation subsystem refers to the determination of the spacecraft’s current 

attitude and angular velocity vector from the attitude sensor measurements. 

Technically, this task is known as attitude determination, and the techniques involved 

can be largely divided into methods that perform statistical analysis on a series of 

measurements taken over time and methods that do not. The control subsystem 

determines the amount of torque to be delivered to the spacecraft to execute the 

guidance command by correcting the attitude error and at the same time maintaining 

the attitude stability. 

 

 

Considering that most spacecraft that provide real-time communication services do not 

tolerate service disruptions or degradation due to attitude control system failure, instead 

of relying the thrusters expel propellant to produce a control torque (that eventually 

leads to shortened operational life), it is important to look for new ideas to create a 

fuel-free option for generating a control torque from the existing subsystems. The 

synergisms for spacecraft attitude control system are crucial for the sustainable 

development of future spacecraft that demand optimum collaborative payload design 

approach, and thus, reducing the number of subsystems for spacecraft. 

 

 

With the aim to determine the stabilizing torque, it is essential to acquire the 

knowledge of how the spacecraft attitude will respond to the control torque. Since this 

response is dictated by the attitude dynamics, the spacecraft attitude dynamics and 

control are studied in this research work via modeling and simulation. This work will 

be the basis to ensure a successful in-orbit operation in terms of the spacecraft attitude 

control task. 

 

 

1.2  Research Aims 

 

In general, spacecraft attitude control poses a number of challenges, with the nonlinear 

dynamics and in particular stabilizing the attitude in three axes using two reaction 

wheels, as the most challenging one, involving both hardware and software issues. 

Because the SADA is used to rotate and point a solar array toward the Sun, it can be 

treated as an unconventional momentum exchange device for the purpose of attitude 

control. For this reason, the idea of Combined Attitude and Sun Tracking System 

(CASTS) is conceived so that the actuation of attitude control stays active during both 

sunrise and eclipse phases. Therefore, the research aim is to investigate the CASTS 

capabilities of the spacecraft using the fuzzy logic-based control schemes. 

 

 

For this work, the research objectives to be achieved are stated as follows:  

 

i. To develop a combined attitude and Sun tracking control architecture for a 

flexible spacecraft with a nadir pointing capability. 

ii. To design various fuzzy logic-based attitude control laws to ensure the attitude 

stabilization in the presence of external disturbance while the solar arrays 

track the Sun closely.  
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iii. To test and validate of the proposed CASTS architectures together with all the 

governing equations through numerical treatments with the in-orbit 

conditions. 

 

 

1.3  Scope of the Study 

 

This study focuses on the control system simulation for rigid and flexible spacecrafts 

with the CASTS architecture from the domain of spacecraft development. For the 

flexible case, the spacecraft is a bi-wing Earth-orbiting satellite with two solar arrays 

typically mounted on the pitch-axis. Since the CASTS is about the in-orbit attitude 

stabilization using the solar arrays, naturally, the research considers only the pitch-axis 

rotational maneuver of the spacecraft. Therefore, the roll and yaw-axes are assumed to 

be controlled separately by the well-functioning reaction wheels. 

 

 

Likewise, since most large Earth-orbiting satellites have two solar arrays mounted on 

the pitch-axis, therefore, it is natural that the CASTS modeling procedure is limited to 

large satellites. The models are neither for small satellites nor microsatellites. 

 

 

The simulation of the spacecraft system requires the modeling of a rigid spacecraft hub 

and the flexible solar arrays. The elastic deformations of the spacecraft hub are 

extremely small, and thus are negligible. The models of spacecraft and CASTS only 

reflect the real motion functionally and does not reflect the internal design of the solar 

array and SADA component such as the electric motor control circuits. The model is 

also assumed to consist of one rigid hub and two flexible appendages. 

 

 

For a nadir-pointing satellite, where the spacecraft points directly towards the center of 

Earth, it is reasonable to consider small deviations in the Euler angles (which are used 

to represent the attitude) and the angular velocities, so that the proper linearization 

procedure can be applied to the spacecraft kinematics and dynamics. 

 

 

In the CASTS architecture, the solar arrays are driven by the SADA, which has one 

degree of rotational freedom with respect to the pitch-axis of rotation. The SADA 

typically consists of a bipolar stepper motor, however, in the CASTS, the SADA must 

be driven by a brushless DC motor in order to achieve high attitude accuracy. 

 

 

All solar cells on the solar array are assumed to align perfectly on the absolutely flat 

surface of the solar array. Because the power loss of the solar array is dependent on the 

angle of incidence, this assumption allows the power loss of the entire solar array to be 

computed from the angle of incidence of the solar array, instead of the effective angle 

of incidence of each solar cell. 

 

 

The scope of the fuzzy control design procedure is restricted by the scope of linear 

controllers, and thus, the design procedure is relevant whenever the linear control 
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methods such as PID control, state feedback, pole placement, and Linear-Quadratic 

Regulator are feasible, or already implemented previously. 

 

 

In the simulation work of spacecraft systems, it is relevant to precisely define terms “to 

test” and “to validate”:  

 

i. “To test” is to analyze the designed spacecraft control system for gaining an 

insight to its dynamical motion through simulations that implies conducting 

numerical experiments on the mathematical model of the spacecraft system 

using the MATLAB® computational software. 

ii. “To validate” is to check that the spacecraft control system performs as 

required by the specifications in terms of the attitude accuracy and the desired 

Sun tracking capability. 

 

 

 

1.4  Outline of Thesis 

 

The thesis consists of seven chapters and focuses on the control design problems on 

spacecraft attitude dynamics. Chapter 1 serves as the introductory chapter on some 

fundamental information on the attitude control and simulation. Chapter 2 presents the 

discussions of scholarly papers on three topics, namely the conventional control 

methods, the computational intelligence methods, and the synergisms for spacecraft 

attitude control system. Chapter 3 covers spacecraft kinematics and dynamics, 

modeling of flexible spacecraft using Euler−Lagrangian method, and the analysis 

required to understand the deformation of multiple-degree-of-freedom solar arrays. 

Typical external disturbance torques that act on a spacecraft are also introduced in this 

chapter. Chapter 4 focuses on the architecture of combined attitude and Sun tracking 

system (CASTS) development, where the attitude control system and solar tracking 

system are discussed profoundly. The design of attitude control laws is treated in 

Chapter 5, and the fundamentals of fuzzy control are introduced in the chapter as well. 

Chapter 5 also discusses the versatility of fuzzy controller for CASTS, the disturbance 

observer-based fuzzy control, and the fuzzy switch-gain sliding mode control. Chapter 

6 deals with the simulations of multiple scenarios based on the proposed attitude 

control laws designed in Chapter 5. The final chapter concludes the thesis work and 

recommends the future direction of research towards spacecraft synergisms. 
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